

Trends in Packaging and Infrastructure for DOD Modular Systems

Ken Grob

Elma Electronic Inc.

ETT 1/28/19

Background

- Packaging standards driven by VITA and PICMG around Eurocard for decades
- DoD introduces Modular Open Systems Approach (MOSA) to address future needs
 - Improve systems capability, compatibility and cost
 - Leads to other standards

Standards Driving Embedded Systems

C4ISR/EW Modular
Open Suite of Standards

HARDWARE OPEN SYSTEMS TECHNOLOGIES

Vehicular Integration for C4ISR/EW interoperability

MORA

Modular Open
Radio Frequency
Architecture

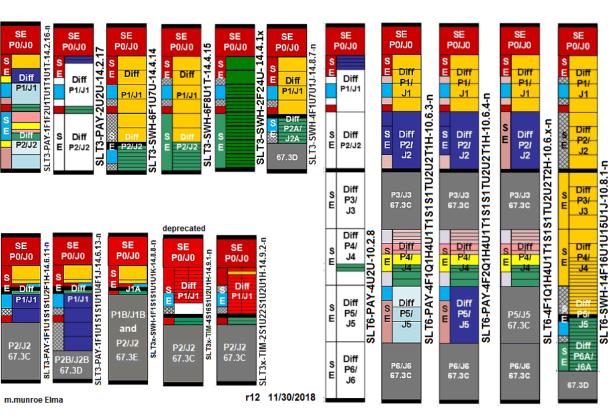
MOSA Objectives

Collaboration between Government and Industry

Specify base system architectures for common systems

Select a hardware standard

Promote interoperability thru more constrained Slot and Module Profiles


System Management thru VITA 46.11

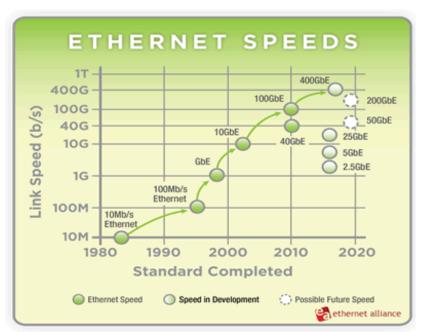
Normalize the Power Module interface definition

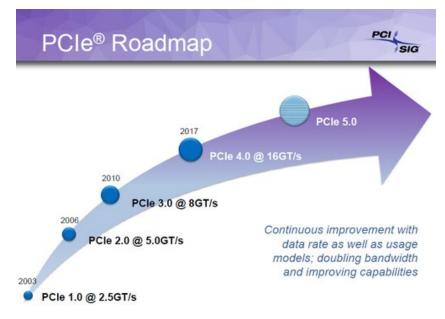
Support higher power modules through new cooling techniques

VITA / SOSA Aligned Slot Profiles

Emerging
development
backplanes keep
pace with the
introduction of
new slot / module
profiles

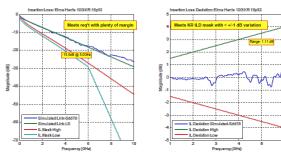
System Infrastructure Requirements




System Infrastructure	
Network	High Speed Switching
Timing	Precision Nav and Timing Module
System Management	Chassis Management via VITA 46.11
Power Systems	Updated Power Rails defined by VITA 62

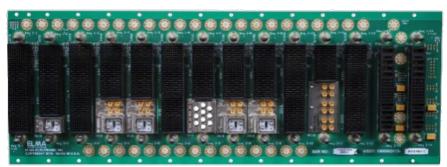
Ethernet / PCIe Link Speed Trends

- Drives signaling rate from 10Gb to 25Gb lanes
- 25Gb enables 100Gb Ethernet via 4 backplane lanes



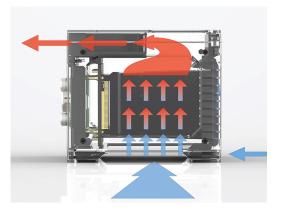
Implementation Challenges

- Backplanes to operate 2.5 times faster
- Design requires signal integrity modeling and simulations
- Implementation requires new high-speed
 PCM material like Megtron 7
- Higher speed VPX connectors like Tyco RT3 backwards compatible with RT2



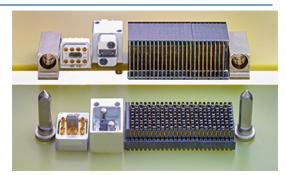
Insertion loss (IL) shows how much energy is lost across the backplane as a function of frequency. These longest KR backplane channels exhibit plenty of margin MRT to the IEEE 802.1 Land LD massle for IGO. There is about 1-66 Gef loss at the 6 Gritz Inadamental frequency leaving just under 7 dB margin. Insertion loss deviation (ILD) measures the linearity of the loss as a function frequency. The more linear the lost, the belieft are receiver equalization will be a decurately recording dda. The ILD aboves less than

function of less than

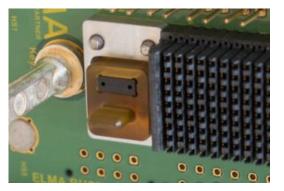


Thermal Cooling Techniques Evolve

- High power density per module
 - 60 to 130 watts and higher
 - Requires new cooling techniques
- New approaches
 - VITA 48.8 Air flow-through (AFT) cooling
 - VITA 48.4 Liquid flow-through cooling
- Requires new card guide technology
- Modules require new heat sink designs



System Connectors : Copper and Fiber


- New connectors to support higher Ethernet and RF speeds
 - Ethernet needs copper interconnect in backplane
 - Fiber interconnect via VITA 66.4,
 VITA 66.5, and MT ferrules
- Transceivers embedded in edge-mount fiber-optic based connectors

TE Nano RF Module

Elma 3U VPX VITA 66.4

Reflex Photonics LightConex

Power Systems Evolve

- Reduce number of system rails
 - New scheme is two voltages: +12V & +3.3V AUX
 - Make current sharing more practical
- Introduces VITA 46.11 to power supply module
 - For reporting and control

Behlman VITA 62 power modules



System Management

VITA 46.11 System Management applied

- Chassis & system management strategy
- Modules to support IPMB

Summary

- New technology and standards have a significant impact on chassis, backplane, and power system design
 - Backplanes will need to operate at 25Gb/s and beyond
 - Networks will use 100Gb in 3U and 6U Ethernet switches
 - PCIe interfaces will support PCIe Generation 4 at 16 GT/s
- Chassis cooling design will support VITA 48.1, VITA 48.2 and Air Flow Through VITA 48.8 and Liquid Flow Through cooling VITA 48.4
- Power solutions will evolve to +12V & 3.3V Aux two-rail design
- Fiber optics based connectors will be implemented between backplane and module
- Reference designs will be produced to provide chassis and backplane test beds for new modules and systems

